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There are many ways of tracking the robot’s position using sensors. One can use inputs 

from the wheel encoders, the gyro, the accelerometer, the camera, and likely more. The trick is 
combining all these various inputs, with their varying sensitivities and accuracies, into a more 
definitive, single, absolute calculated position. Before we can attack this problem, we must first 
figure out how to get from raw sensor data to potential position data. 
 To begin, we set the robot center at position (0,0), in whatever units are convenient, 
facing at an angle of 0 (i.e. forward along the x-axis). (Angles are in radians throughout, as this 
simplifies calculation. When starting the robot at a known position on the field, the relevant 
position data may be substituted for our generic zeros.) We then take the input from each sensor 
at regular time intervals (using a Timer to measure the actual time elapsed between readings), as 
often as possible, and calculate the change in each value from the previous reading. 
 
 The gyro reading is easy to translate into an angle; the code does this automatically, and 
the change is merely new angle minus old angle. (Calibration is another matter entirely, which 
we may not get to in this paper…) 
 
 The encoders require somewhat more work. Note: in this set of calculations it is assumed 
that (a) two encoders are used, one on each side; (b) these two encoders are attached to wheels 
one either side of the robot center; and (c) the drivetrain is a {straight drive}, like a standard six- 
or four-wheel (see left illustration). If assumption (a) and (c) hold, we can proceed as if (b) held 
as well, because we can shift the path of the center relative to the wheels without changing the 
value of the distance traveled (compare left and right illustrations). If there are more than one 
encoder to a side, a simple solution is to average the ticks of the encoders on each side. If the 
drivetrain is not a {straight drive}, the analysis becomes more complicated, and to save time, we 
will not cover it here.  
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First, the change in ticks is calculated separately for each side (again via new value minus 

old value; quad encoders are a necessity here). Then this value is divided by the number of ticks 
per revolution and multiplied by the distance traveled per revolution to get the distance traveled: 
∆𝐝𝑙𝑒𝑓𝑡 𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 = ∆𝐭𝐢𝐜𝐤𝐬 �𝐫𝐞𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧

𝐭𝐢𝐜𝐤𝐬
� � 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞

𝐫𝐞𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧
�,  where  distance/revolution = π(wheel diameter). 

The above calculation is standard. 
 Now, since we are using a minimal time period, it does not matter if the robot is traveling 
straight or turning, {as in either case its path is a straight line}. We can therefore assume its path 
straight or curved without significant {error}. Assuming the path curved, the inner wheel travels 
along an arc of radius r, the outer wheel follows an arc of radius r+w (where w is the width of 
the drivetrain, wheel center to wheel center), and the robot center traces an arc of radius r+w/2. 
Without loss of generality, take the outer wheel to be the right wheel (as in a right turn). 
Assuming (reasonably given such a short time frame) that the arcs subtend the equal angle θ (see 
drawing below), the arc lengths (distances traveled) are ∆𝐝r = θr, ∆𝐝l = θ(r+w), and                   
∆𝐝 = θ(r+w/2) for left, right, and center respectively. Then ∆𝐝 = 𝛉 �𝐫 + 𝒘

𝟐
� =  𝟐𝛉𝐫 + 𝛉𝐰

𝟐
=

 𝛉(𝐫+𝐰) + 𝛉𝐫 
𝟐

, therefore: 

∆𝐝 = ∆𝐝𝐥+∆𝐝𝐫
𝟐

             (1)  
according to the encoders!  
 Note that this is accurate 
whether the robot was turning left  
or right, and that if it was in fact 
going straight, ∆𝐝 = ∆𝐝l = ∆𝐝r! 
  
 

 

 

 

Now to determine the change in the robot’s angle relative to the field coordinate system. 

Rearranging a few earlier equations, 𝛉 = ∆𝐝𝐫
𝐫

= ∆𝐝𝐥
𝐫+𝐰

. Rearranging this proportion, rΔdl = rΔdr + 

wΔdr, so r(Δdl – Δdr) = wΔdr, that is, 𝐫 = 𝐰𝚫𝐝𝐫
∆𝐝𝐥−∆𝐝𝐫

 . Substituting this into 𝛉 = ∆𝐝𝐫
𝐫

, we get 

𝛉 = ∆𝐝𝐫 ÷ � 𝐰𝚫𝐝𝐫
∆𝐝𝐥−∆𝐝𝐫

� = ∆𝐝𝐫(∆𝐝𝐥−∆𝐝𝐫)
𝐰𝚫𝐝𝐫

; that is: 

 𝛉 = ∆𝐝𝐥−∆𝐝𝐫
𝐰

     (2) 
 



θ 

This is also the change in the robot’s angle in terms of the encoder data, since the sides  
of the two angles are mutually perpendicular (in the limit). See the diagram below: 

        The change in robot angle φ is the angle between the two black lines;   
         the solid black line is perpendicular to one of the radii that form the  
         angle θ. The tangent line to the other radius (perpendicular by  
         definition) is the blue dotted line. Since the time period used is so  
         short, both dotted lines are practically the same as the circular arc  

      followed by the robot, and thus are effectively identical. Therefore  
    the sides of the angles φ and θ are perpendicular to each other, and  

 so φ = θ — that is, θ is also the change in the robot’s angle relative 
to the field! Note that θ is positive when the robot turns to the right, 

and negative when it turns to the left (fitting the gyro’s angle convention but against the usual 
trigonometric convention). 
 
 
 On to the accelerometer. First of all, getting from acceleration to distance: over any time 
interval the change in velocity ∆𝐯 =  ∫ 𝐚(𝐭)𝐝𝐭𝐭𝟏

𝐭𝟎
, where a(t) is acceleration as a function of time; 

over a small enough time frame this is effectively a linear function. By the {secant 
approximation},  ∆𝐯 ≈  𝐚(𝐭)����� ∫ 𝐝𝐭𝐭𝟏

𝐭𝟎
= 𝐚 �𝐭𝟎 +  ∆𝐭

𝟐
� ∙ (𝐭𝟏 − 𝐭𝟎) = �𝐚𝟎 + ∆𝐚

𝟐
�∆𝐭 (since a(t) is linear 

over our short time frame {further explanation?}), where a0 is the acceleration recorded last time, 
Δa is the calculated change in acceleration (again new value minus old value), and Δt is the 
calculated change in time (from the Timer). Then an equivalent process yields ∆𝐝 ≈ �𝐯𝟎 + ∆𝐯

𝟐
� ∆𝐭, 

where v0 is the velocity calculated from the acceleration recorded last time. 
 Now, to use the accelerometer effectively for determining position, it is necessary that it 
be able to measure acceleration independently on separate axes; the analog accelerometer is thus 
disqualified, and an ADXL345 (via I2C or SPI) or similar required. Then (with the accelerometer 
arranged so its x-axis is the robot’s forward/backward axis, and forward acceleration causes 
positive x-acceleration) we can calculate the change in x-axis acceleration and y-axis 
acceleration separately, and from these the change in x position Δdx and the change in y position 
Δdy via the approximations described above. We can do this by approximating the path as a 
straight line (rather than an arc as with the encoders); over the minimal time frame used, we can 
assume that the two accelerations are directly translated into speed and therefore distance 
changes. We cannot use these directly, since the accelerometer xy frame is not necessarily the 
same as the field xy coordinate system. Instead we must use the change in (robot-centered) x / y 

to calculate in robot angle 𝚫𝛉 = 𝐭𝐚𝐧−𝟏 ∆𝒅𝒚
∆𝒅𝒙

= ∆𝒅𝒚
∆𝒅𝒙

  (since our time frame is minimal, tan-1 x ≈ x) 

and the distance traveled  𝚫𝐝 = �𝚫𝐝𝒙𝟐 + 𝚫𝐝𝒚𝟐 . 

  



 
 For methods of interpretation of camera images, see PositionDetermination. For 
efficiency and avoiding the tie-up of too much processing time in the intensive image-analysis 
computation, the camera should be consulted less often than the other sensors. 
 
 Once all these values are calculated, we can calculate the robot’s change in position in 
several combinations: encoder and accelerometer distances each combined with encoder, gyro, 
and accelerometer angle changes. (Camera gives only absolute positions, not changes, and must 
be treated separately—see below.) Now, we use these 12 different values (6 for x and 6 for y) 
and weighted-average them (independently for x and y, of course). The weights should be based 
on relative accuracies of the different combinations and must be tuned by experiment. 
Then we add the average calculated changes in x and y, add them to our previously calculated 
position (or the original known position in the first run-through) to get the current position. In 
iterations that consult the camera (with a successfully analyzed image), the coordinates 
calculated from the image data can then be weighted-averaged in with the other data, again with 
a weight that reflects the camera’s relative accuracy. 
 
Further Note: my coordinate system of choice (with the z axis pointing up; units are inches): 
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