

 Encoder
 L

Encoder
 R

Possible drivetrain

Pa
th

 o
f l

ef
t w

he
el

 Path of right w
heel Pa

th
 o

f r
ob

ot
 c

en
te

r

Encoder
 L

Encoder
 R

Pa
th

 o
f l

ef
t w

he
el

 Path of right w
heel

Pa
th

 o
f r

ob
ot

 c
en

te
r

Robot
center

Robot
center

Another possible drivetrain Driving a distance Driving the
same distance

Determining Absolute Robot Position by
Analysis of Various Sensors

15 Feb 2012
Peter Stoeckl

There are many ways of tracking the robot’s position using sensors. One can use inputs

from the wheel encoders, the gyro, the accelerometer, the camera, and likely more. The trick is
combining all these various inputs, with their varying sensitivities and accuracies, into a more
definitive, single, absolute calculated position. Before we can attack this problem, we must first
figure out how to get from raw sensor data to potential position data.
 To begin, we set the robot center at position (0,0), in whatever units are convenient,
facing at an angle of 0 (i.e. forward along the x-axis). (Angles are in radians throughout, as this
simplifies calculation. When starting the robot at a known position on the field, the relevant
position data may be substituted for our generic zeros.) We then take the input from each sensor
at regular time intervals (using a Timer to measure the actual time elapsed between readings), as
often as possible, and calculate the change in each value from the previous reading.

 The gyro reading is easy to translate into an angle; the code does this automatically, and
the change is merely new angle minus old angle. (Calibration is another matter entirely, which
we may not get to in this paper…)

 The encoders require somewhat more work. Note: in this set of calculations it is assumed
that (a) two encoders are used, one on each side; (b) these two encoders are attached to wheels
one either side of the robot center; and (c) the drivetrain is a {straight drive}, like a standard six-
or four-wheel (see left illustration). If assumption (a) and (c) hold, we can proceed as if (b) held
as well, because we can shift the path of the center relative to the wheels without changing the
value of the distance traveled (compare left and right illustrations). If there are more than one
encoder to a side, a simple solution is to average the ticks of the encoders on each side. If the
drivetrain is not a {straight drive}, the analysis becomes more complicated, and to save time, we
will not cover it here.

(Angle greatly
exaggerated)

θ

r

First, the change in ticks is calculated separately for each side (again via new value minus

old value; quad encoders are a necessity here). Then this value is divided by the number of ticks
per revolution and multiplied by the distance traveled per revolution to get the distance traveled:
∆𝐝𝑙𝑒𝑓𝑡 𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 = ∆𝐭𝐢𝐜𝐤𝐬 �𝐫𝐞𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧

𝐭𝐢𝐜𝐤𝐬
� � 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞

𝐫𝐞𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧
�, where distance/revolution = π(wheel diameter).

The above calculation is standard.
 Now, since we are using a minimal time period, it does not matter if the robot is traveling
straight or turning, {as in either case its path is a straight line}. We can therefore assume its path
straight or curved without significant {error}. Assuming the path curved, the inner wheel travels
along an arc of radius r, the outer wheel follows an arc of radius r+w (where w is the width of
the drivetrain, wheel center to wheel center), and the robot center traces an arc of radius r+w/2.
Without loss of generality, take the outer wheel to be the right wheel (as in a right turn).
Assuming (reasonably given such a short time frame) that the arcs subtend the equal angle θ (see
drawing below), the arc lengths (distances traveled) are ∆𝐝r = θr, ∆𝐝l = θ(r+w), and
∆𝐝 = θ(r+w/2) for left, right, and center respectively. Then ∆𝐝 = 𝛉 �𝐫 + 𝒘

𝟐
� = 𝟐𝛉𝐫 + 𝛉𝐰

𝟐
=

 𝛉(𝐫+𝐰) + 𝛉𝐫
𝟐

, therefore:

∆𝐝 = ∆𝐝𝐥+∆𝐝𝐫
𝟐

 (1)
according to the encoders!
 Note that this is accurate
whether the robot was turning left
or right, and that if it was in fact
going straight, ∆𝐝 = ∆𝐝l = ∆𝐝r!

Now to determine the change in the robot’s angle relative to the field coordinate system.

Rearranging a few earlier equations, 𝛉 = ∆𝐝𝐫
𝐫

= ∆𝐝𝐥
𝐫+𝐰

. Rearranging this proportion, rΔdl = rΔdr +

wΔdr, so r(Δdl – Δdr) = wΔdr, that is, 𝐫 = 𝐰𝚫𝐝𝐫
∆𝐝𝐥−∆𝐝𝐫

 . Substituting this into 𝛉 = ∆𝐝𝐫
𝐫

, we get

𝛉 = ∆𝐝𝐫 ÷ � 𝐰𝚫𝐝𝐫
∆𝐝𝐥−∆𝐝𝐫

� = ∆𝐝𝐫(∆𝐝𝐥−∆𝐝𝐫)
𝐰𝚫𝐝𝐫

; that is:

 𝛉 = ∆𝐝𝐥−∆𝐝𝐫
𝐰

 (2)

θ

This is also the change in the robot’s angle in terms of the encoder data, since the sides
of the two angles are mutually perpendicular (in the limit). See the diagram below:

 The change in robot angle φ is the angle between the two black lines;
 the solid black line is perpendicular to one of the radii that form the
 angle θ. The tangent line to the other radius (perpendicular by
 definition) is the blue dotted line. Since the time period used is so
 short, both dotted lines are practically the same as the circular arc

 followed by the robot, and thus are effectively identical. Therefore
 the sides of the angles φ and θ are perpendicular to each other, and

 so φ = θ — that is, θ is also the change in the robot’s angle relative
to the field! Note that θ is positive when the robot turns to the right,

and negative when it turns to the left (fitting the gyro’s angle convention but against the usual
trigonometric convention).

 On to the accelerometer. First of all, getting from acceleration to distance: over any time
interval the change in velocity ∆𝐯 = ∫ 𝐚(𝐭)𝐝𝐭𝐭𝟏

𝐭𝟎
, where a(t) is acceleration as a function of time;

over a small enough time frame this is effectively a linear function. By the {secant
approximation}, ∆𝐯 ≈ 𝐚(𝐭)����� ∫ 𝐝𝐭𝐭𝟏

𝐭𝟎
= 𝐚 �𝐭𝟎 + ∆𝐭

𝟐
� ∙ (𝐭𝟏 − 𝐭𝟎) = �𝐚𝟎 + ∆𝐚

𝟐
�∆𝐭 (since a(t) is linear

over our short time frame {further explanation?}), where a0 is the acceleration recorded last time,
Δa is the calculated change in acceleration (again new value minus old value), and Δt is the
calculated change in time (from the Timer). Then an equivalent process yields ∆𝐝 ≈ �𝐯𝟎 + ∆𝐯

𝟐
� ∆𝐭,

where v0 is the velocity calculated from the acceleration recorded last time.
 Now, to use the accelerometer effectively for determining position, it is necessary that it
be able to measure acceleration independently on separate axes; the analog accelerometer is thus
disqualified, and an ADXL345 (via I2C or SPI) or similar required. Then (with the accelerometer
arranged so its x-axis is the robot’s forward/backward axis, and forward acceleration causes
positive x-acceleration) we can calculate the change in x-axis acceleration and y-axis
acceleration separately, and from these the change in x position Δdx and the change in y position
Δdy via the approximations described above. We can do this by approximating the path as a
straight line (rather than an arc as with the encoders); over the minimal time frame used, we can
assume that the two accelerations are directly translated into speed and therefore distance
changes. We cannot use these directly, since the accelerometer xy frame is not necessarily the
same as the field xy coordinate system. Instead we must use the change in (robot-centered) x / y

to calculate in robot angle 𝚫𝛉 = 𝐭𝐚𝐧−𝟏 ∆𝒅𝒚
∆𝒅𝒙

= ∆𝒅𝒚
∆𝒅𝒙

 (since our time frame is minimal, tan-1 x ≈ x)

and the distance traveled 𝚫𝐝 = �𝚫𝐝𝒙𝟐 + 𝚫𝐝𝒚𝟐 .

 For methods of interpretation of camera images, see PositionDetermination. For
efficiency and avoiding the tie-up of too much processing time in the intensive image-analysis
computation, the camera should be consulted less often than the other sensors.

 Once all these values are calculated, we can calculate the robot’s change in position in
several combinations: encoder and accelerometer distances each combined with encoder, gyro,
and accelerometer angle changes. (Camera gives only absolute positions, not changes, and must
be treated separately—see below.) Now, we use these 12 different values (6 for x and 6 for y)
and weighted-average them (independently for x and y, of course). The weights should be based
on relative accuracies of the different combinations and must be tuned by experiment.
Then we add the average calculated changes in x and y, add them to our previously calculated
position (or the original known position in the first run-through) to get the current position. In
iterations that consult the camera (with a successfully analyzed image), the coordinates
calculated from the image data can then be weighted-averaged in with the other data, again with
a weight that reflects the camera’s relative accuracy.

Further Note: my coordinate system of choice (with the z axis pointing up; units are inches):

 (648,0) (0,0)

(0,324)

X axis

Y
ax

is

