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Abstract: Using the FRC Camera in conjunction with the NI Vision 
software, the robot’s position relative to a vision target can be determined. 
The Vision software can detect ellipses in the camera image and measure 
their major and minor diameters. The ellipse detection software can thus 
measure the apparent deformation of the target by the camera’s changing 
angle relative to the target, which can be used to determine the robot’s 
position.  

 
First, it is necessary to examine the relation between the camera image and the target’s 
dimensions. 

 
Assuming the camera to be equivalent to a pinhole camera makes it easy to see that the 
height himage of the target on the camera image and the effective focal length f of the 
camera are proportional to the target’s apparent actual height (see below) ha and the 
distance d from the camera to the target: himage ÷ f = ha ÷ d .  The same applies to the 
respective widths: wimage ÷ f = wa ÷ d . 
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Diagram of the target as viewed by the camera 
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The vision target has a true diameter (thus height) h0, which is known. The difference in 
elevation z between the camera and the center of the target is also known. The camera’s 
(effective) focal length f can be determined by experimentation. At a constant horizontal 
distance dh from the target, the height of the target on the image (himage) remains constant. 
This value can be determined using the ellipse detection software. The camera is not 
detecting the true height of the target, however, but instead an apparent height ha; the 
plane of this apparent height is at an angle of α to the vertical, which can be shown to be 
the same as the angle between the line from the camera to the center of the target (with 
length d) and the horizontal. 

Then d is the distance from the camera to the target, and since sin α = z ÷ d,          
d = z ÷ sin α. Also, since the angle between the two h planes is α, ha = h0 cos α. 
Substituting these values into himage ÷ f = ha ÷ d yields himage ÷ f = (h0 cos α sin α) ÷ z . 
cos α sin α = ½ sin 2α (see, for example, www.clarku.edu/~djoyce/trig/identities.html), 
thus himage ÷ f = (h0 sin 2α) ÷ 2z . Solving for α yields α = (asin ((2zhimage) ÷ fh0) ÷ 2, in 
terms of variables which are all known. Then tan α = z ÷ dh, therefore dh = z ÷ tan α. Thus 
the horizontal straight-line distance, dh,  from the robot (with the camera) to the target can 
be determined. 
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From the first section, wimage ÷ f = wa ÷ d . Solving for wa: wa = dwimage ÷ f . Also (by the 
same argument as in the second section) wa = w0 cos β, w0 being equal to h0 since the 
target is circular. Substituting, w0 cos β = dwimage ÷ f, and then solving for β:                     
β = acos (dwimage ÷ fw0) . (Note that d equals z ÷ sin α—see previous section). This is, 
however, not in a horizontal position (see 3-D diagram); the true horizontal angle βh is 
therefore different from β. The length y is equal to d sin β, and dh = d cos α; then           
sin βh = y ÷ dh = d sin β ÷ d cos α = sin β ÷ cos α, and therefore βh = asin (sin β ÷ cos α) . 
The angle of the robot (and camera) from the target has now been determined. In 
addition, it is now possible to locate the robot with cartesian coordinates relative to the 
target; the distance in one direction (y) has already been calculated; in the other direction, 
x = dh cos βh . 
 
Final Note: This algorithm does not give enough information to determine whether the 
robot is βh degrees to the left or to the right of the target. However, if it is known which 
target on the Breakaway field is being observed, this can be determined to a reasonable 
degree of certainty. Since the targets are very close to the sides of the field, it is very 
unlikely that the camera will be on the side of the target nearer the side of the field; 
therefore the robot will most likely be to the left of the targets labeled L below and to the 
right of the targets labeled R. 
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Addendum: 2012-Specific Additions 
17 Feb 2012 

 
 The calculation of position (or angle+distance) occurs in mostly the same way, 
except that the target is now a rectangle, not an ellipse, so it has independent height and 
width values. 
 Using a camera on a turret: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this diagram, the center of the target is at point T, the center of the basket attached to 
the target is point B, the center of the turret shooter is point S, and the camera is at point 
C. The angle βh and distance dh are calculated as before. The desired values, however, are 
ds (distance from shooter to basket) and θs (change in angle between current turret 
position and pointing straight at the basket). Now the camera is pointed at a specific spot 
on the alliance wall (arrow), with an image plane (dotted line) perpendicular to the line of 
sight at the point it contacts the wall, and the target an image at point T’; however, for the 
target size position calculation, we assumed an image plane perpendicular to the line of 
sight CT at the target center. However, at large enough dh and small enough angle θ 
between camera line of sight and line to target, the two planes can be assumed identical, 
as can the distance from camera to point P and to point T (aka dh). Under the same 
assumptions, we can assume q and q’ identical; then from PC (≈PT=dh) and PT’ (=q’) we 
can calculate θ=atan(q’/dh), which, since we are assuming θ to be adequately small, 
approximately equals q’/dh. (q’ can be calculated by multiplying the distance the center of 
the target appears from the center of the image, in pixels, by the scale factor at the 
distance dh—this again contingent on the assumptions above.) 
 Now we were looking for θs, but we do not yet have enough information, and too 
many assumptions. Our strategy therefore is to request the turret to turn an additional θ 
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degrees in the direction of the target (since θ < θs), and recalculate. Once the target is 
finally centered, the complexity reduces to the following diagram: 
 
 
  
 
 

 
 
 
  
 
 
 
 
 
 
 
 
 This diagram looks equally complicated, but the geometry is easier. x and y can 
be calculated as in the original method. Now ∆y = SC * sin(βh), and y’ = y – ∆y can be 
calculated, as can x’ = x – SC * cos(βh) – TB. Then φ = atan(y’/x’) and the desired θs = φ 
– βh, while ds = sqrt(x’2 + y’2). 
 
One more postscript: a new derivation of y that can save some calculation in the code:  
y = d * sin(β) = z/sin(α) * sin(β). Multiplying by 1 = cos(α)/cos(α), we get 
y = z/sin(α)*cos(α) * (sin(β)/cos(α)) = z/tan(α) * sin(βh) = dh * sin(βh) ! 
(Actually, this can just be derived directly from the first, 3-D diagram… Oh well! 
 
Connection to positioning: if the identity of the target is known (this requires some 
complicated comparison of target center positions…), so is its position in the field 
coordinate system. Knowing the x and y distances between the robot and the target 
(possibly requiring taking camera position on turret into account), we can then add these 
values to the target’s known position, and thus derive the robot’s position on the field. 


