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We performed experiments in which a soccer ball was launched from a machine while two cameras
recorded portions of its trajectory. Drag coefficients were obtained from range measurements for
no-spin trajectories, for which the drag coefficient does not vary appreciably during the ball’s flight.
Lift coefficients were obtained from the trajectories immediately following the ball’s launch, in
which Reynolds number and spin parameter do not vary much. We obtain two values of the lift
coefficient for spin parameters that had not been obtained previously. Our codes for analyzing the
trajectories are freely available to educators and students. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

Of great interest to those who study the physics of sports
are the aerodynamic properties of various objects. Seminal
works by Briggs1 on baseballs and Achenbach2,3 on smooth
and rough spheres have become standard references for those
studying spherically shaped sports balls. Further work has
been done on baseballs,4,5 golf balls,6 tennis balls,7 and
volleyballs.8

The understanding of the physics of soccer balls has in-
creased greatly in the past decade and a half. Several wind-
tunnel experiments9–12 and computer models13–17 have been
done on the aerodynamics of soccer balls. Our contribution
is on the analysis of trajectories. Similar studies have been
performed on tennis balls18,19 and baseballs.20,21

The most important number used to describe phenomena
associated with soccer balls moving through air is the dimen-
sionless Reynolds number, Re, defined as22

Re =
vD

�
, �1�

where v is the air speed far from the ball in the ball’s rest
frame, which is the speed of the ball in the stationary air’s
frame. Also D is the ball’s diameter, and � is the kinematic
viscosity, defined as the ratio of the viscosity � to the density
of air �. For our experiments ��1.54�10−5 m2 /s. For D
�0.218 m Eq. �1� becomes for a soccer ball moving
through air

Re � 10−5 �
v

7 m/s
�

v
16 mph

. �2�

The game of soccer is played mostly for 10 mph�v
�70 mph �4.5 m /s�v�31 m /s�, and hence the range of
Reynolds numbers relevant for a soccer game is approxi-
mately 70 000�Re�490 000.

As the Reynolds number is increased through a critical
value, air flow in the ball’s boundary layer changes from
laminar to turbulent flow. The boundary layer separates far-
ther back on the ball, and the resistive drag coefficient
drops.23 Panel connections, like stitches on a baseball and
dimples on a golf ball, induce turbulence at a Reynolds num-
ber lower than that of a smooth ball. One soccer ball wind-
tunnel experiment yields9 a transition from laminar to turbu-

5
lent flow at Re�1.4�10 �ball speed of about 9.9 m/s�.
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Another study10 found the transition to be slightly greater
than Re=2�105 �ball speed of about 14 m/s�. Not all soccer
balls are the same. Although we studied a standard 32-panel
stitched ball,24 there are other types. The 2006 World Cup,
for example, used a 14-panel thermally bonded ball.

If a player imparts spin to the soccer ball, as might happen
for a free kick or a corner kick,16 the ball may curve more
than it would if it were not spinning. Forces associated with
the spinning ball are usually parametrized by the Reynolds
number and by the dimensionless spin parameter, Sp, which
is the ratio of the rotating ball’s tangential speed at the equa-
tor to its center-of-mass speed with respect to the air.25 For a
ball of radius r, angular speed �, and center-of-mass speed v,
Sp is given by

Sp =
r�

v
. �3�

Many student projects may be derived from our work be-
cause trajectory analysis can be done for many projected
objects, not just soccer balls. Present-day software allows
students to obtain sophisticated results without having to
program complicated algorithms. We refer interested readers
to Ref. 26 for the MATHEMATICA programs we wrote to ana-
lyze our trajectory data and to Ref. 27 for those wishing to
learn about MATHEMATICA in the context of physics.

II. EXPERIMENTAL SETUP

We performed soccer ball launch experiments in a sports
hall on the campus of the University of Sheffield. Figure 1
shows our ball launcher. Four counter-rotating wheels allow
us to vary the launch speed and spin. Setting the four wheels
independently at varying speeds allows balls to be fired with
either no spin, topspin, backspin, sidespin, or a combination.
Camera 1 was placed near the launcher to record the ball’s
launch. Figure 2 shows a schematic of our experimental
setup. Camera 2 was used to record motion just before and
past the ball’s apex. We placed camera 2 against a wall so
that the camera recorded as much of the trajectory as pos-
sible. We chose not to use a wide-angle lens with camera 2
because the ball images were too small in our videos. With
our system there is a trade-off between ball size in the video
and field of view. Camera 1 obtained roughly the first 0.07 s

of the trajectory, and camera 2 obtained �0.4 s of the trajec-
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tory. Based on the launch speeds we used, the two cameras
recorded the ball’s trajectory during about one-third of its
time in the air. Both high-speed cameras recorded at a rate of
1000 frames/s.

There are more elaborate and expensive experimental set-
ups available, such as the HAWK-EYE system,28 which is used
in cricket, tennis, and, more recently, snooker. Our budget
allowed the use of two quality high-speed cameras ��$2500
per camera�. More sophisticated systems, which employ as
many as six high-speed cameras for full three-dimensional
data acquisition, are an order of magnitude more expensive
than our system. Such systems are capable of tracking pro-
jected objects, although determining accurate rotation rates is
still a challenge.

We also used markers on the ground to note the range of
each launched ball. Based on visual observation of the land-
ing positions, we estimate our range error to be no more than
�5 cm.

CINE VIEWER
29 was used to convert a cine to AVI format.

We did not notice any frame loss, a problem sometimes
found when converting to AVI. Our software was used to
track the ball and to obtain Cartesian coordinates of the ball’s
center of mass.30 Figure 3 shows a sample of the data taken
from camera 1. Figure 4 shows data taken from camera 2 of
the launch shown in Fig. 3.

Once the data points were loaded into a file, the initial
launch condition was obtained. The launch position is deter-
mined by measuring the height of the ball launcher’s exit.
The components of the initial velocity were determined us-
ing Richardson extrapolation,31,32 which gives, among other

Fig. 1. Ball launcher used for the trajectory experiments. Note the ball
emerging from the launcher and the location of camera 1 on the right side of
the photo.

Fig. 2. A not-to-scale sketch of the experimental setup. Camera 1, about
1.5 m from the plane of the trajectory, records the launch of the soccer ball.
Camera 2, about 13 m from the plane of the trajectory, records a portion of
the trajectory near the apex of the flight. The z axis �not shown� points out

of the page.
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results, a forward-difference expression for the first deriva-
tive using three points. If we want the derivative of a func-
tion f�t� at t0 and we know the value of f�t� at t0, t1, and t2,
where t1= t0+�t and t2= t0+2�t for a step size �t, then the
Richardson extrapolation gives for the first derivative at t0

f��t0� �
− 3f�t0� + 4f�t1� − f�t2�

2�t
, �4�

where the error is of order ��t�2.
The spin rate was determined by following a given point

on the ball as the ball turned either a half turn �for slow
spins� or a full turn �for fast spins�. We achieved initial spin
rates in the range from no spin to about 180 rad/s �more than
1700 rpm�, though most tests were carried out for spin rates
less than 125 rad/s.

III. FORCES ON BALL

The forces on projectiles moving through air have been
discussed in many articles33 and books.34 Figure 5 shows the
various forces on the ball. We assume the soccer ball’s tra-
jectory to be close enough to the surface of the Earth so that
the gravitational force on the ball, mg� , is constant. The mass
of the ball is m=0.424 kg.

The air exerts a force on the soccer ball. The contribution
to the air’s force from buoyancy is small ��0.07 N� and is
ignored. A scale used to determine weight will have that
small force subtracted off anyway. The major contributions

Fig. 3. Data from camera 1 for a launch with no spin. The centers of the
circles denote the ball’s center of mass in 0.005 s intervals. The ball was
launched with speed of v0�18 m /s at an angle of 	0�22° from the
horizontal.

Fig. 4. Data from camera 2 for the no-spin launch in Fig. 3. Each circle’s
center notes the ball’s center of mass in 0.010 s intervals. For more accurate
results we zoom the image to four times what is shown. The ball landed

21.9 m from the launcher’s base.
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to the air’s force come from resistive drag and the Magnus
force. The drag force acts opposite to the ball’s velocity, v� ,
and may be written as35

F� D = 1
2�Av2CD�− v̂� , �5�

where �=1.2 kg /m3 is the air density, A�0.0375 m2 is the
ball’s cross-sectional area, v= �v� � is the ball’s speed, CD is the
dimensionless drag coefficient, and v̂=v� /v.

Figure 6 shows wind-tunnel data from two
experiments.9,10 The experiments from Ref. 9 used two balls,
a “scale” model �66 mm diameter�, and a mini-soccer ball
�140 mm diameter�. Scale models are acceptable because
two similar geometric objects will have the same drag coef-

FD

FL

mg

v

Fig. 5. The forces on a soccer ball. The gravitational force points down, the
drag force is opposite the ball’s velocity, the lift force is perpendicular to the
ball’s velocity and in the plane formed by the velocity and the ball’s weight,
and the sideways force �not shown� is into the page.
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Fig. 6. Wind-tunnel data for CD from Refs. 9 and 10. The Reynolds number
is shown at the bottom, while the corresponding speed of a soccer ball is
shown at the top. The line through the data from Ref. 10 is to help visually
separate the two experiments. The thick line at CD=0.17 for 2.23�Re

−5
�10 �2.76 represents our maximum-speed launch.
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ficient for a given Reynolds number, a fact well known to
aircraft designers. The wind-tunnel data from Ref. 10 were
found using a regulation 32-panel ball, similar to our ball.
Although there is slight disagreement over where the transi-
tion from laminar flow to turbulent flow occurs, both sets of
data show the same qualitative feature, namely, a reduction
in CD by about a factor of 2 as the speed increases through
the transition speed. We note that the scaled models used in
Ref. 9 have sharper edges than real soccer balls, a fact that
might explain the differences in data from Refs. 9 and 10.

Figure 7 shows wind-tunnel data10 for CD as a function of
Sp. Note that all five post-transition tests show CD values
unaffected by changes in speed. As Sp increases, however,
CD increases.

The Magnus force arises when the ball spins while moving
through the air. We refer the reader to Refs. 33 and 34 for
quantitative discussions of the Magnus force. There are two
components of the Magnus force that are relevant. The lift
force, which points perpendicular to the drag force and re-
mains in the plane formed by v̂ and the ball’s weight, is
given by36

F� L = 1
2�Av2CL�̂ , �6�

where CL is the dimensionless lift coefficient and �̂ is a unit
vector perpendicular to v̂ and in the plane formed by v̂ and
the ball’s weight.

The other component of the Magnus force is the sideways
force given by37

F� S = 1
2�Av2CS��̂ � v̂� , �7�

where CS is the dimensionless sideways coefficient. Because
F� L and F� S arise from the same physical phenomena, finding
CL as a function of Reynolds number and spin parameter
means also knowing CS as a function of Reynolds number
and spin parameter. We choose different subscripts for CL
and CS because they are also functions of the spin axis di-
rection. For pure topspin or backspin, CS=0; for pure side-
spin, CL=0. Both CL and CS vanish if the rotational speed is
zero �our model ignores “knuckle-ball” effects due to seam
orientations�. Our experimental approach is to work with ei-
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Re = 424 827
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Re = 333 793

Fig. 7. Experimental wind-tunnel data from Ref. 10 for CD as a function of
Sp. Note that all five Reynolds numbers are above the transition. Lines
between data points help to visually separate the five experiments.
ther pure topspin or pure backspin. In such a case the motion

1022John Eric Goff and Matt J. Carré



is confined to two dimensions, and CS=0. We determine CL
from the two-dimensional motion.

Figure 8 shows wind-tunnel data9,10 for CL as a function of
Sp. Note that plotting CL is the same as plotting CS. We plot
the absolute value of CL because our CL values are negative
because the topspin created by our launcher produces a com-
ponent of F� L pointing down. The plot shows that CL in-
creases in magnitude with increasing Sp.

We emphasize that the air exerts a single force on the ball.
When we model the flight of the soccer ball, we need three
components of the air’s force because the ball moves in three
dimensions. The drag, lift, and sideways forces are merely
common choices used to model the air’s force components.

Understanding the flight of a soccer ball requires knowl-
edge of the dimensionless coefficients CD, CL, and CS. Wind-
tunnel experiments have yielded results over some of the
range of Reynolds numbers and spin parameters associated
with the game of soccer.

Incorporating the forces due to the air and gravity into
Newton’s second law gives

ma� = F� D + F� L + F� S + mg� , �8�

where a� is the soccer ball’s acceleration after it has left a
player and before it hits anything. We use Eqs. �5�–�7� to
write Eq. �8� as

a� = 
v2�− CDv̂ + CL�̂ + CS��̂ � v̂�� + g� , �9�

where 
=�A /2m�0.0530 m−1.
Equation �9� is a second-order coupled nonlinear differen-

tial equation. After choosing a coordinate system, Eq. �9�
must be solved numerically for the trajectory.

IV. MODEL IN TWO DIMENSIONS

Consider the case for which a soccer ball is launched with
no sidespin so that CS=0 in Eq. �9�. It may have topspin,
backspin, or no spin. The motion is thus confined to the x-z

plane in Fig. 2. The unit vectors v̂ and �̂ are determined
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Fig. 8. Wind-tunnel data for �CL� from Refs. 9 and 10 as a function of Sp.
Also shown are four data points from our trajectory analysis. The lines
between data points visually separate the wind-tunnel data from our results.
easily from Fig. 9 and are
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v̂ = cos 	x̂ + sin 	ẑ =
vx

v
x̂ +

vz

v
ẑ , �10�

and

�̂ = − sin 	x̂ + cos 	ẑ = −
vz

v
x̂ +

vx

v
ẑ , �11�

where vx and vz are the x and z components, respectively, of
the velocity vector.

With g� =−gẑ, Eq. �9� may be written as

ax = − 
v�CDvx + CLvz� , �12�

and

az = 
v�− CDvz + CLvx� − g . �13�

If the trajectory is known, the velocity and acceleration
can be determined and Eqs. �12� and �13� may be solved for
CD and CL, giving

CD = − � �az + g�vz + axvx


v3 	 , �14�

and

CL =
�az + g�vx − axvz


v3 , �15�

where v2=vx
2+vz

2. If we could determine exactly the trajec-
tory from experiment and then find the velocity and accel-
eration from that trajectory, we could determine the drag and
lift coefficients as functions of the speed. A major problem
with this approach is that the numerical derivatives obtained
from the experimental data have large errors associated with
them.38 We note that camera 1 records over a short enough
time that we may obtain a reasonable estimate using Eqs.
�14� and �15�. For a sample of how this estimate is done
using a simple spreadsheet, we refer the reader to Ref. 26.
For those without MATHEMATICA, or for those looking for a
simpler computational approach, we encourage downloading
our EXCEL spreadsheet in Ref. 26.

V. MODEL IN THREE DIMENSIONS

We present our three-dimensional results for complete-
ness. However, we have not developed a sophisticated track-
ing mechanism that allows us to obtain full three-
dimensional trajectory data. Our ball launcher is capable of
projecting soccer balls with sidespin. At present, we have
codes26 for a three-dimensional analysis. What we have done
so far is to launch a ball with sidespin and note its landing
point. From the horizontal and lateral ranges we can deter-
mine CS assuming that it is constant over the trajectory.

v

θ

Fig. 9. The angle 	 is the angle the velocity vector makes with the
horizontal.
Given the wind-tunnel results in Fig. 8, such an assumption
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is not applicable, although CS may not vary much. Improving
our three-dimensional data acquisition is a goal of future
work.

If a soccer ball possess sidespin, meaning that its spin axis
is not perpendicular to the x-z plane in Fig. 2, CS�0 in Eq.
�9�. The ball thus moves in three dimensions instead of hav-
ing its trajectory confined to the x-z plane. Figure 10 shows
the velocity vector in three dimensions. The unit vector along
v� may be written as

v̂ = sin 	̄ cos �x̂ + sin 	̄ sin �ŷ + cos 	̄ẑ , �16�

or

v̂ = vxx̂ + vyŷ + vzẑ . �17�

The latter form will be more convenient for programming.

The unit vector �̂ is found by taking v̂ and rotating the

angle 	̄ back by � /2 and keeping � the same. Because

sin�	̄−� /2�=−cos 	 and cos�	̄−� /2�=sin 	, the unit vector

�̂ is

�̂ = − cos 	̄ cos �x̂ − cos 	̄ sin �ŷ + sin 	̄ẑ . �18�

Figure 10 helps us to write the angles 	̄ and � in terms of

the Cartesian components of v� . From cos 	̄=vz /v and

tan �=vy /vx, we obtain sin 	̄=v� /v, cos �=vx /v�, and
sin �=vy /v�, where v�= �vx

2+vy
2�1/2 and v= �vx

2+vy
2+vz

2�1/2.
Equation �18� now becomes

�̂ = −
vxvz

vv�

x̂ −
vyvz

vv�

ŷ +
v�

v
ẑ . �19�

The third unit vector we need is �̂� v̂. From Eqs. �16� and
�18� we obtain

�̂ � v̂ = − sin �x̂ + cos �ŷ = −
vy

v�

x̂ +
vx

v�

ŷ . �20�

We substitute Eqs. �17�, �19�, and �20� into Eq. �9� and

vx

vz

vy

v

θ

x

z

yθ

ϕ

Fig. 10. The polar angle is 	̄, and the azimuthal angle is � of the velocity

vector. The angle measured from the horizontal is 	=� /2− 	̄.
solve for the acceleration components to find
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ax = − 
v
CDvx +
CLvxvz + CSvvy

v�

� , �21�

ay = − 
v
CDvy +
CLvyvz − CSvvx

v�

� , �22�

and

az = 
v�− CDvz + CLv�� − g . �23�

As we did in Sec. IV, we solve the acceleration component
equations for the aerodynamic coefficients. The result is

CD = − � �az + g�vz + �axvx + ayvy�

v3 	 , �24�

CL =
�az + g�v�

2 − �axvx + ayvy�vz


v3v�

, �25�

and

CS =
ayvx − axvy


v2v�

. �26�

Note that we recover our two-dimensional results if we set
ay, vy, and CS all to zero. As before, we can, in principle,
determine the speed dependence of the aerodynamic coeffi-
cients from Eqs. �24�–�26�. As discussed at the close of Sec.
IV, using empirical data for numerical derivatives leads to
velocity and acceleration components that are unreliable.

VI. RESULTS AND DISCUSSION

Figure 11 shows a typical no-spin trajectory. For no spin
on the ball we set CL and CS both to zero and solve Eqs. �12�
and �13� numerically for x�t� and z�t�. The drag coefficient,
CD, is a free parameter. We minimized the square of the
difference of the final value of x from the numerical solution
with the measured range. CD is varied until the computed
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Fig. 11. �a� The computed trajectory using the initial launch conditions
�v0�18 m /s and 	0�22°� from the trajectory in Figs. 3 and 4. With CD

=0.2 and CL=CS=0, the computed range is 21.9 m. Also shown are the data
points taken from cameras 1 and 2. �b� and �c� Zoomed-in portions of the
parts of the trajectory recorded by cameras 1 and 2, respectively. The aspect
ratio is not equal to one in the three trajectory plots. �d� The variation of the
Reynolds number during the flight of the ball.
range matches the experimentally measured range. The com-
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puted trajectory in Fig. 11 was made with CD=0.2 and gave
a range of 21.9 m, which was measured experimentally.

Also shown in Fig. 11 are the actual data points from the
two cameras. The camera 1 data were shifted so that the first
point matched the initial launch point. The camera 2 data
were shifted so that the apex of the data matched the apex of
the computational solution. Because the two cameras were
not synchronized in time, we could not match the camera 2
data with the time points of the numerical solution. We de-
termined the maximum height of the ball from the camera 2
data using a known length in the video. That maximum
height matched the shifted camera 2 data’s maximum height
to two digits. The camera 2 data points do not sit perfectly on
the numerical solution. Aside from small errors associated
with trying to determine the center of the ball during the
video analysis, the slightly erratic look to the data comes
from knuckle-ball effects associated with a nonrotating ball.

Figure 11 also shows how the Reynolds number varies
during the flight as determined from the numerical solution
with CD=0.2. The minimum value of Re is close to the tran-
sition region where turbulent flow changes back to laminar
flow. Most of the flight takes place in the turbulent region.

To further demonstrate that our numerically determined
value of CD is accurate, we show in Fig. 12 that a value of
CD equal to 0.1 or 0.3 would have meant that the computed
range would be off by �1.5 m from the 21.9 m we mea-
sured. An error of 1.5 m is an order of magnitude larger than
the uncertainly associated with our range measurement. The
difference in maximum heights between the CD=0.2 curve
and the CD=0.1 or CD=0.3 curves is about 10 cm. For a
maximum height of �3 m an error of 10 cm is greater than
the two-digit height accuracy we stated. A plot of the square
of the difference between the experimental range and nu-
merical ranges �normalized by the experimental range� is
shown in Fig. 13. We thus believe that the recorded trajec-
tory seen in Figs. 3 and 4 corresponds to a trajectory with
CD=0.2.

The initial launch speed of �18 m/s corresponds to Re
�2.6�105, meaning that the ball was launched well past the
transition speeds predicted by both wind-tunnel experiments.
The CD value we found is for a post-transition launch Rey-
nolds number that is just past the Reynolds number where
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Fig. 12. The same plot as in Fig. 11�a�, with numerical solutions for
0
CD
0.5. The value of the range R is given for each of the numerical
solutions. The graph’s aspect ratio is not equal to one.
the wind-tunnel data from Ref. 9 cross the wind-tunnel data
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from Ref. 10 �see Fig. 6�. To sort out which experimental
data we are matching, we launched a ball at the maximum
speed that we could obtain without hitting the ceiling rafters
or the far wall. A launch speed of �19.4 m/s, corresponding
to Re�2.76�105, is the maximum speed we could test,
given our sports hall and launcher. Such a launch speed gave
an experimental range of 24.6 m. We did the same analysis
used to create Figs. 11–13 and obtained CD=0.17 for our
maximum-speed launch. This CD value is slightly closer to
the Ref. 10 data, which are the one we expect to match,
given that the Ref. 10 measurement used a regulation sized
soccer ball. Unfortunately, our facilities do not allow us to
launch a nonspinning ball fast enough to obtain post-
transition data at higher Reynolds numbers. From our nu-
merical solution the minimum Reynolds number for our
maximum-speed launch trajectory is Re�2.23�105. Be-
cause we assume a constant value of CD in our numerical
solution, we include in Fig. 6 our results using CD=0.17 for
the range of 2.23�105�Re�2.76�105.

For rotating balls we can extract values of CL from camera
1 data only. The reason is that the Reynolds number and spin
parameter do not change appreciably during the �0.07 s
from the launch that camera 1 records. For the ranges of
launch speeds and spins we used, we surmised from both
cameras that the ball’s spin rate decreases around 4%–8% by
the time the ball had just passed its flight apex. Previous
work suggests that spin decay is roughly exponential.39 We
assume that the spin rate has dropped by about 10% by the
time the ball hits the ground and that the maximum decrease
in speed �and thus Re� is roughly 20%, as seen in Fig. 11�d�.
Because Sp increases as Re decreases, we expect CL to in-
crease in magnitude throughout the ball’s flight based on the
wind-tunnel data in Fig. 8.

Figure 14 shows four sets of camera 1 data, each with the
corresponding numerical solution. The latter was generated
by choosing the appropriate CD from Fig. 7 �extrapolating if
necessary�, meaning CD is no longer a free parameter, and
then optimizing the numerical solution to give the least-
squares deviation from the data points. The position data
points come from taking a single launch video, analyzing it
on three separate occasions, and then averaging the three sets
of results. Despite the fact that the three sets of data are in
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Fig. 13. The no-spin trajectory from Figs. 3 and 4 had an experimental
range of Rexp�21.9 m. The plot shows how ��Rexp−Rnum� /Rexp�2 varies
with CD, where Rnum is the range determined from a numerical solution.
quantitative agreement, we find that the averaging signifi-
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cantly reduces errors that we introduce when identifying the
ball’s center of mass in each frame of the video analysis. All
four launches had topspin, meaning that the lift force has a
downward component, which is why CL is negative. As we
vary CD by �30%, the change in CL is less than 5%, which
implies that if we are a little off in our estimate of CD from
Fig. 7, our CL values will not be very sensitive to errors.

We have included the CL results from Fig. 14 in Fig. 8.
Note that our two points for Sp�0.25 are within the experi-
mental data from Ref. 10. Our contribution verifies previous
wind-tunnel work10 and adds two new points for values of Sp
that have not been reported from existing wind tunnels. Our
results suggest a possible leveling off of the magnitude of CL
as Sp increases. We plan to do more experiments at large
spin parameters. For a ball of radius r with center-of-mass
speed v and rotation speed �, the speed of one side of the
ball with respect to the air is v+r�, and the relative speed on
the opposite side is v−r�. That means that the relative speed
of the latter of these two sides can be smaller than the tran-
sition speed. For Sp=1 the speed of the ball with respect to
the air on the v−r� side would be zero. We thus do not
expect the lift coefficient data to follow the near linear trends
suggested by the wind-tunnel data shown in Fig. 8.

Professional soccer players are capable of producing re-
markable trajectories when taking spot kicks, such as the
famous goal by David Beckham in the World Cup Qualifiers
for England against Greece in 2001. Our analysis of time-
coded television footage of this free kick indicates that the
ball left Beckham’s foot at about 36 m/s �Re�5.1�105�
from about 27 m away from the goal. He imparted an aver-
age of ��63 rad /s �Sp�0.19� on the ball. It rose above the
height of the crossbar during its flight and moved laterally
about 3 m, before slowing down to about 19 m/s �Re�2.7
�105� as it dipped into the corner of the goal.

We can do a back-of-the-envelope calculation to estimate
the aerodynamic coefficient needed to produce the bend in
Beckham’s kick. We assume that the speed of the kick is
constant and equal to the average speed ��27.5 m /s�, the
spin is pure sidespin, and the only sideways force is de-
scribed by Eq. �7�. These assumptions are not correct but are
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Fig. 14. Four experiments with soccer balls launched with topspin. Initial
values of Re and Sp are shown. Values of CD chosen for the numerical
solutions are also shown with the corresponding numerically generated CL

values.
reasonable enough to estimate CS. The time of flight is
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roughly t��27 m� / �27.5 m /s��0.98 s. The sideways ac-
celeration, aS, can be estimated by assuming constant accel-
eration, giving 3 m��1 /2�aSt2. The result is aS

�6.2 m /s2, which implies that the sideways force is maS
�2.6 N. If we equate the magnitude of Eq. �7� with this
force and use the estimate of the average speed, we obtain
CS�0.2. From the experimental results near Sp=0.19 in Fig.
8 and the fact that CS and CL arise from the same physical
phenomena, we see that our estimate for CS is reasonable.

The real work to find aerodynamic coefficients needs to be
done in wind tunnels or in a manner similar to what we have
described in this paper.
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