2018:End Game Mechanism: Difference between revisions

From 1511Wookiee
Jump to navigationJump to search
No edit summary
No edit summary
Line 145: Line 145:
<span style="font-size:medium">POC Adapter to mount Vex Versa Gear Box To Ac926 Scissor Jack</span>
<span style="font-size:medium">POC Adapter to mount Vex Versa Gear Box To Ac926 Scissor Jack</span>


[[File:Sissor Jack Vex Versa Gear Box Adapter.jpg|621x483px]]
[[File:Sissor Jack Vex Versa Gear Box Adapter.jpg|621x483px|Sissor Jack Vex Versa Gear Box Adapter.jpg]]




Line 151: Line 151:
<span style="font-size:medium">POC Coupling to connect Vex Versa Gear Box To Ac926 Scissor Jack</span>
<span style="font-size:medium">POC Coupling to connect Vex Versa Gear Box To Ac926 Scissor Jack</span>


<span style="font-size:medium">[[File:Sissor Jack Versa Gear Box Coupling.jpg|621x481px]]</span> <br/>'''<u><span style="font-size:medium">Tons of usefull reference links below</span></u><span style="font-size:medium">>>></span>'''
<span style="font-size:medium">[[File:Sissor Jack Versa Gear Box Coupling.jpg|frame|621x481px|Sissor Jack Versa Gear Box Coupling.jpg]]</span>
 
<span style="font-size:medium">AC926 Scissor Jack</span>
 
<span style="font-size:medium"></span>[[File:AC926 Jack.jpg|frame|467x664px]]
 
<span style="font-size:medium">AC926 Scissor Jack Exploded Parts List</span>
 
<span style="font-size:medium"></span>[[File:AC926 Jack Assembly Exploded Parts List.jpg|frame|473x682px]]
 
<span style="font-size:medium">AC926 Scissor Jack POC Experiment</span>
 
<span style="font-size:medium">[[File:AC926 Jack Experiment.jpg|frame|572x677px]]</span>
 
 
 
 
 
 
 
 
 
<span style="font-size:medium"></span><br/>'''<u><span style="font-size:medium">Tons of usefull reference links below</span></u><span style="font-size:medium">>>></span>'''


=== putting together a 14-1 gear ratio motor: ===
=== putting together a 14-1 gear ratio motor: ===

Revision as of 08:56, 16 January 2018

End Game Subteam

Leads: Mark M, Tai L, Rachel B

Day 1>>>

Brainstormed concepts of how to climb:

Use climbing mechanism that will be able to share bar with another robot

Use climbing mechanism that will take up entire bar but will take another robot up with ours

Create our own ramp that will lift up both robots above 11"

Made sure our brainstormed designs would account for bumper rules ( We realized that prototypes that drop below our drivetrain violate the bumper rules. The bumper rule states

R24. BUMPERS must be located entirely within the BUMPER ZONE, which is the volume contained between the floor and a virtual horizontal plane 7 in. (~17 cm) above the floor in reference to the ROBOT standing normally on a flat floor. BUMPERS do not have to be parallel to the floor. This measurement is intended to be made as if the ROBOT is resting on a flat floor (without changing the ROBOT configuration), not relative to the height of the ROBOT from the FIELD carpet. Examples include: Example 2: A ROBOT deploys a MECHANISM which lifts the BUMPERS outside the BUMPER ZONE (when virtually transposed onto a flat floor). This violates R24) - Two ramps fold down, one end being fixed at around 11" above the platfrom and other end starting on the carpet, carpet end would raise up to around 11"

- Two ramps fold down, most of ramp is parallel and 11" above platform and at the end, it folds down at the same angle of the edge of the platform

- Same as first concept, except rather than having ramp start at carpet, it would start at the top edge of the platform

- Two ramps fold out like a butterfly (folds twice), first fold will have top of ramp at 11" above platform, would be 33" by 33", and second fold will extend down to the carpet where robots can drive up it 

- Use a climbing mechanism that would take up entire bar but would be able to take another robot up with us

- Use a climbing mechanism that would be small enough to share bar with another robot

- Have bar on bottom of robot, would have another robtot connect on bottom after we are all the way up

Day 2>>>

Realized ramp idea would be safer than climbing up, especially with other robots

Designed several different concepts for a ramp

Tested measurements and variables for the ramp (Angle tests: 13 15 20 25,Tests were worst case scenarios with 4 inch omni wheels and bumpers with 1.5 inch clearance.)

Started to lean more towards building a ramp for other robots to drive up


Day 3>>>

Started building carboard prototypes

Started putting concepts on CAD

Realized that Null Zone will interefere with the ramp design (Continued evaluation of the game by strategy revealed that it is possible for an opponent to defend one of our partners from getting on our ramp. If the opponent is touching their null zone they would completely block access to that side of our ramp. Because of this Strategy has given us the following criteria. Ramps must be accessed by robots from the platform zone.)

Began to think of how we would actuate certain designs ( Thinking about using pneumatics, car jacks)

Day 4 >>>

Narrowed down to 2 ramp designs:

- One design had a side fixed at 11" with a hinge and the other side would rise up with some type of actuator

- The other design would have two plates flat on the platform that the robots would drive up on and then the plates would rise up like an elevator


Day 5 >>>

Started buildings design with foam core

Were able to find out final dimensions with drive team base

Finished CAD prototyping

Prepared speech for Saturday objective tables

-Develop best concept

    Fit within space allowed

-Ability to be consistent

- Meet weight requirement

-Able to account for other teams robots

-That we can fit it into our own

-Buildible

Lift Concept Side View

Check out the POC Video of this Concept on Day 7:


Lift concept side view

Lift Concept End View

Lift Concept End View.png

Lift Concept Plan View

Lift Concept Plan View.png


Day 6>>>

Weighted objective tables for which mechanism we would use ( Either the elevator or the hinge)

Started to CAD the car jack for our lift


RTENOTITLE


Day 7 (11/14/2018 )>>>

http://penfieldrobotics.com/wiki/images/3/39/Lift.PNG

CAD of our concept with actual measurements Poc Scissor Jack Vex Versa Gear Box Mounting Adapter To Ac926 Scissor Jack Assembling prototype for demonstration

RTENOTITLE

RTENOTITLE



RTENOTITLE

Car jack can hold 650 lbs with 0.1 inches of deflection

1511 2018 Robot Lift POC Video

Click to View Video:Media:1511_2018_Robot_Lift_POC_Videp_01142018.zip

1511 2018 Robot Lift POC Video Thumb nail Image 01142018.png


POC Adapter to mount Vex Versa Gear Box To Ac926 Scissor Jack

Sissor Jack Vex Versa Gear Box Adapter.jpg


POC Coupling to connect Vex Versa Gear Box To Ac926 Scissor Jack

Sissor Jack Versa Gear Box Coupling.jpg

AC926 Scissor Jack

AC926 Jack.jpg

AC926 Scissor Jack Exploded Parts List

AC926 Jack Assembly Exploded Parts List.jpg

AC926 Scissor Jack POC Experiment

AC926 Jack Experiment.jpg






Tons of usefull reference links below>>>

putting together a 14-1 gear ratio motor:

http://www.flexicraft.com/Rubber_Expansion_Joints

https://www.etrailer.com/Vehicle-Suspension/SuperSprings/SSF-102-47.html?feed=npn&gclid=EAIaIQobChMI1vLSnsjM2AIVS7nACh1mGADbEAYYAyABEgIGBvD_BwE

http://www.enidine.com/en-US/Products/AirSprings/

http://www.matjack.com/matjack-high-pressure-air-lifting-bags.htmlhttps://www.steinbock-industrie.de/en/products/bellows-taylor-made/vulcaflex-moulded-bellows/?p=1&gclid=EAIaIQobChMIwrWe2c_M2AIVW57ACh3ZhAFsEAAYASAAEgKHCPD_BwE

R10LAM&ust=1515646785440859

http://ph.parker.com/us/en/short-stroke-high-thrust-single-acting-air-bellow-actuators-9109-sp-series-parker-pneumatic-europe

https://www.enerpac.com/en/news/new-ultra-flat-hydraulic-cylinders

http://www.ergo-help.net/telescoping-air-cylinders.html

https://grabcad.com/library/manual-mini-scissor-lift-1

https://grabcad.com/naren-15/projects

https://grabcad.com/library

2010 Breakaway

https://youtu.be/BaEACal3lBk

https://youtu.be/deLBOsZQEs8

https://youtu.be/dD_Az1q6fRM

https://youtu.be/OmZhu_vJV1M

Team 118 Robonauts

https://youtu.be/PtRewwr59d8 - Team 118's robot for the 2014 FIRST Robotics Competition

https://youtu.be/C-fA0YxxvnU

https://youtu.be/sWHwDfpeYjo - firing winch hanger

https://youtu.be/sWHwDfpeYjo - Extending grabbing arm

FRC Team #971 Spartan Robotics

https://youtu.be/F_Auxy_ZdAQ - Good vertical lift FRC Team #971 Spartan Robotics

Cheif Delphi - How will your robot hand

https://www.chiefdelphi.com/forums/showthread.php?threadid=161014

https://titanium-stainless-steel.continentalsteel.com/viewitems/aluminum-sheet-coil/aluminum-sheet-5086-h116

https://www.onlinemetals.com/merchant.cfm?id=62&step=2&top_cat=60

https://www.plascore.com/honeycomb/honeycomb-panels/standard-honeycomb-panels/