2022:Intake: Difference between revisions
Mechanical1 (talk | contribs) No edit summary Tag: visualeditor |
Mechanical1 (talk | contribs) No edit summary Tag: visualeditor |
||
Line 12: | Line 12: | ||
== Prototyping 1/16/2022 == | == Prototyping 1/16/2022 == | ||
Today, we decided to integrate the intake, storage, and shooter mechanisms in order to make sure the systems fit together. First, we needed to do a rough robot real-estate, so that we could determine the sizes of our mechanism. Through CAD/Inventor testing, we found that the mechanisms were able to work together well with a intake width of 16" (outside to outside). Next, we determined belt width and tooth sizes for our intake pulleys and put them in the team shopping cart. The rest of the day was spent doing shooter to storage integration. | Today, we decided to integrate the intake, storage, and shooter mechanisms in order to make sure the systems fit together. First, we needed to do a rough robot real-estate, so that we could determine the sizes of our mechanism. Through CAD/Inventor testing, we found that the mechanisms were able to work together well with a intake width of 16" (outside to outside). Next, we determined belt width and tooth sizes for our intake pulleys and put them in the team shopping cart. The rest of the day was spent doing shooter to storage integration. | ||
== 1/19/2022 == | |||
After a team integration to get everyone on the same page, cargo joined as a group to assemble our prototypes in CAD in order to figure out how to retract intake and what angle storage/shooter will be in order to maximize space efficiency. We each made separate assemblies for each mechanism and then placed them in a drive base assembly. Once the intake, storage, and shooter were all in one assembly, we were able to properly constrain and align the mechanisms to what we believe is the most beneficial positions. By placing the storage 48.82 degrees from the top of the drive base and by setting the intake pivot point to the top of the storage, we were able to retract the intake into the frame perimeter. Tomorrow, we will try to assemble this complete cargo pathway using the tools in our shop and see if all of our dimensions are still accurate. |
Revision as of 19:47, 19 January 2022
Leaders: Nick V. and Kadence O.
Prototyping 1/9/2022-1/12/2022
Right after kickoff, we divided into groups and started brainstorming intake ideas. We looked over all of our ideas and found the common denominators between all of the designs; over the bumper intake designs and using wheels (either single axil or double axil). Since we decided on a swerve we drive base, we knew that cutting into the bumper would force us to compromise overall stability- something our strategy team determined was very important. We thought that a double axil could help guide the ball to storage and it might be beneficial in getting it over our 6" (off the ground) bumper. Next, tested each wheels impact on the cargo and discovered that compliance wheels worked the best. Finally, we launched into prototyping and set up a to-scale drive base with a bumper for reference. We prototyped both 4" and 2" compliance wheels of different densities and decided on 2" black compliance wheels and then made sketches and a 3D CAD model to help us determine the height of the intake.
Prototyping 1/13/2022
Today, we picked up where we left off and went back to the CAD drawing, adjusting angles and measurements as we learned more information. After finding out that 9.125" from the ground to the center of the axil and 10.625" from the inside of the bumper to the center of the axil, we began to create more accurate dimensions based on our strategy teams long/skinny robot goal. We estimated that the front of our robot would be roughly 22" (not including bumper), so we reduced the intake to 16" and tested it. Once we got that working, we worked very closely with the storage team and integrated our ideas together, working on a way to transfer the cargo from intake to storage. we decided on a funnel, made from a Lexan-like plastic and began prototyping. We are still trying to get the right angle/arc for the funnel.
Prototyping 1/15/2022
Picking up where we left off, we integrated the storage mechanism into the intake using a second axle with 2"compliance wheels to transition the cargo, 14.5" from the ground to the center of axle and 4" from the inner bumper to the center of axle. We also attached Lexan near the first axle in order to keep the ball low and control the parabola oriented arc. Next, we stabilized the intake mechanisms at the correct lengths and orientations relevant to the storage, and tested the intake, picking up the ball from multiple angles and positions. All of our tests were done while the robot was moving, rather than feeding into the robot, to give us more accurate results.
Prototyping 1/16/2022
Today, we decided to integrate the intake, storage, and shooter mechanisms in order to make sure the systems fit together. First, we needed to do a rough robot real-estate, so that we could determine the sizes of our mechanism. Through CAD/Inventor testing, we found that the mechanisms were able to work together well with a intake width of 16" (outside to outside). Next, we determined belt width and tooth sizes for our intake pulleys and put them in the team shopping cart. The rest of the day was spent doing shooter to storage integration.
1/19/2022
After a team integration to get everyone on the same page, cargo joined as a group to assemble our prototypes in CAD in order to figure out how to retract intake and what angle storage/shooter will be in order to maximize space efficiency. We each made separate assemblies for each mechanism and then placed them in a drive base assembly. Once the intake, storage, and shooter were all in one assembly, we were able to properly constrain and align the mechanisms to what we believe is the most beneficial positions. By placing the storage 48.82 degrees from the top of the drive base and by setting the intake pivot point to the top of the storage, we were able to retract the intake into the frame perimeter. Tomorrow, we will try to assemble this complete cargo pathway using the tools in our shop and see if all of our dimensions are still accurate.