2012:Shooter and Collector: Difference between revisions
From 1511Wookiee
Jump to navigationJump to search
Mechanical1 (talk | contribs) No edit summary |
Mechanical1 (talk | contribs) No edit summary |
||
Line 6: | Line 6: | ||
**Mechanical hardstops | **Mechanical hardstops | ||
**Absolute angular position sensor | **Absolute angular position sensor | ||
**Window motor | **Kit Window motor | ||
**Geared down 48:188 | |||
**<span style="color: red">Need power controller</span> | **<span style="color: red">Need power controller</span> | ||
Line 13: | Line 14: | ||
**Fixed angle of shot -- approximately 60-70 degrees above floor | **Fixed angle of shot -- approximately 60-70 degrees above floor | ||
**Each wheel independently controlled (to control backspin) | **Each wheel independently controlled (to control backspin) | ||
**Powered by Fisher-Price motor on speed controllers | **Powered by Fisher-Price (968-9013) motor on speed controllers | ||
**Transmission -- AM-0002 | |||
**Sensor for RPM on each | **Sensor for RPM on each | ||
***Provide sufficient resolution for rapid speed control update | ***Provide sufficient resolution for rapid speed control update |
Revision as of 14:38, 22 January 2012
Shooter Design
- Turret-mounted
- Approx. 280 degrees of rotation minimum need final range
- 1-degree precision
- Mechanical hardstops
- Absolute angular position sensor
- Kit Window motor
- Geared down 48:188
- Need power controller
- 2-Wheel shooter
- Must be able to impart backspin
- Fixed angle of shot -- approximately 60-70 degrees above floor
- Each wheel independently controlled (to control backspin)
- Powered by Fisher-Price (968-9013) motor on speed controllers
- Transmission -- AM-0002
- Sensor for RPM on each
- Provide sufficient resolution for rapid speed control update
- Identify sensor characteristics
- Camera mounted on turret
- Must have direct light source inline with lens
- Must be able to tilt
- Higher is better to see over robots in front of us
- Do we need pan?
2012:Shooter and Collector Camera
Beater Bar Design
- Fixed position within frame, as close to perimeter as possible
- 1 speed forward, 1 speed reverse (full speed? can use relay?)
- Pushes balls in and on to first conveyor section
- Banebots RS-775 motor
- Banebots P60 4-to-1 transmission, geared down 2-to-1 for total of 8-to-1
Wings/V-collector Design
- V-shaped collector outside of robot
- Articulated up/in and down/out -- 2-position motion
- Just a plain bars, no actual motion on the bars themselves
- Motion must be able to pull unloaded bridge down from horizontal
- Must extert 10lbs force at the tip to pull the unloaded bridge
- AM-0914 motor and associated gearbox
- Geared down 2-to-1 for additional torque (2-to-1 gives stall torque of 6200 oz-lbs = 380 inch-lbs)
- 2-to-1 gearing gives unloaded single-actuation of about 0.433 sec unloaded
- Loaded (bridge) actuation is about 0.525 seconds
- Mechanical hard-stops
- Absolute positional sensor
- Limit switches on both ends
Ball Movement/Storage System Design
- 3-stage conveyor system
- First 2 stages straight at approx. 45 degree rise
- Intake end begins behind front wheel, about 1" from floor
- Each stage uses....
- Additional banner-style very close to intake end (just past beater bar contact point) to count balls and know when we can stop intake on beater bar
Resources
- Ball Trajectory Calculation spreadsheet
- Math behind the above spreadsheet
- Foil Sim III - Air flow simulator; useful for approximating drag effects on a ball
- Motor Specs from FIRST
Shooter and Collector Master Task List
Shooter and Collector's Engineering Notebook
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Engineering Notebook Templates Available at:Engineering_Notebook_Template
Please Label All Notebook Pages 2012:Shooter and Collector XX.XX to avoid confusion.